پیش‌بینی ابتلا به دیابت با استفاده از شبکه عصبی مصنوعی

نویسندگان

  • برفه‌ئی, فرزانه
  • نجفی, ایرج
چکیده مقاله:

Background: Diabetes ever-increasing prevalence and the heavy burdens of controlling and treatment of the disease on people and the country have turned to be greatest challenges for governmental and healthcare authorities. Therefore, the disease prevention takes top priority and to do so the only possible way is detecting the effective parameters and controlling them. This study is about to foresee diabetes rates on the basis of some effective factors and using the artificial neural network.  Methods: This study is conducted in 2014 by using R and SPSS software on 13423 participants of the study evaluation of risk factors of non-communicable diseases which was run in 2007. All the participants were older than 25 and with uncontrolled diabetes. A three-layer artificial neural network was used to evaluate the data, and to choose the best model the area under the ROC curve (AURC) and the prediction accuracy were applied. In this model both applied activation functions were Sigmoid. Results: The three-layer artificial neural network with the architecture of (53:20:2) was identified as the best  model as the area under the ROC curve (AURC), the training prediction accuracy, and the test prediction accuracy were 72.7%, 92%, and 91.6% efficient, respectively. Conclusion: Since in artificial neural network there is no need for common assumption of classic statistical methods and its high prediction accuracy (53:20:2) it is highly recommended to apply this model in predicting diabetes.and factors affecting it, that requires a separate study and research.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

پیش بینی ابتلا به دیابت با استفاده از شبکه عصبی مصنوعی

زمینه و هدف: بیماری دیابت با گسترش روزافزون و بار سنگینی که در نتیجه کنترل و درمان عوارض به مردم و کشور تحمیل می کند به یکی از چالش های مسئولین درمانی و دولتی تبدیل شده است. از این رو پیشگیری از بروز و پیشرفت آن در اولویت قرار می گیرد که این امر تنها با شناسایی عوامل مؤثر و کنترل آن ها امکان پذیر است. این مطالعه درصدد پیش بینی ابتلا به دیابت بر اساس برخی متغیرهای مؤثر با کمک روش شبکه های عصبی م...

متن کامل

تشخیص بیماری دیابت با استفاده از شبکه عصبی مصنوعی و عصبی- فازی

Background & Aim: A main problem in diabetes is its timely and accurate diagnosis. This study aimed at diagnosing diabetes using data mining methods. Methods: The present study is an analytical investigation including 768 individuals with 8 attributes. Artificial neural networks and fuzzy neural networks were used to diagnose the diabetes. To achieve a real accuracy, the Kfold method was used ...

متن کامل

پیشبینی آماری پهنه بندی خطر زلزله احتمالی با استفاده شبکه های عصبی مصنوعی

پیش‌بینی محل وقوع زلزله‌های آتی همراه با تعیین درصد احتمال رخداد، می‌تواند در کاهش خطرات ناشی از زلزله بسیار سودمند باشد. تعیین محل‌های پیش‌بینی شده، سبب افزایش توجه به طراحی، به‌سازی لرزه­ای و ارزیابی قابلیت اعتمادپذیری سازه‌های موجود در این مکان‌ها می‌شود. در پیش‌بینی زمان وقوع زلزله فرضیه‌ها و نظریه‌های گسترده‌ای مطرح است. هنوز شیوه‌ای دقیق برای پیش‌بینی زمان رخداد زلزله‌های آتی مورد تأیید ق...

متن کامل

مدل‌سازی بازده کششی تراکتور با استفاده از شبکه عصبی مصنوعی

در این مطالعه آزمایش­های مزرعه­ای در شرایط متفاوت عمق شخم، سرعت پیشروی و میزان وزنه­های متصل به تراکتور انجام شد. در این تحقیق، عمق شخم در چهار سطح 5، 10، 15 و 20 سانتی­متر، سرعت­های پیشروی در چهار سطح 5/2، 5/3، 5/4 و 5/5 کیلومتر بر ساعت و میزان سنگین­کننده نیز در چهار سطح 0، 40، 80 و 120 کیلوگرم قرار گرفت. شبکه­های عصبی مدل­سازی شده در این تحقیق که به­ منظور پیش­بینی بازده کششی تراکتور مورد اس...

متن کامل

تعیین ارزش دارایی‌های نامشهود با استفاده از شبکه عصبی مصنوعی

درک عوامل موثر بر ارزش شرکت برای سرمایه‌گذاران و اعتباردهندگان پیش از اتخاذ تصمیمات سرمایه‌گذاری یا اعطای تسهیلات، امری حیاتی است. از آن‌جایی که اقتصاد دانش‌محور در حال تکامل یافتن است، روش ایجاد ارزش شرکتی از شیوه سنتی مبتنی بر دارایی‌های فیزیکی به دانش نامشهود منتقل شده است. از این‌رو در آینده نه چندان دور، ارزش‌گذاری دارایی‌های نامشهود به موضوع مهمی در اقتصاد مبدل خواهد شد. این مطالعه بر آن ...

متن کامل

برآورد دمای روزانه خاک با استفاده از شبکه عصبی مصنوعی

دمای خاک یکی از متغیرهای مهم در مطالعات هیدرولوژی، هواشناسی، کشاورزی و اقلیم­شناسی است که اندازه­گیری و برآورد آن ضروری است. با توجه به این­که دمای خاک فقط در ایستگاه­های سینوپتیک کشور اندازه­گیری می­شود، کمبود آن در نقاط فاقد ایستگاه از چالش­های بزرگ در بسیاری از مطالعات مرتبط با کشاورزی است. در این پژوهش، با استفاده از پارامترهای هواشناسی ایستگاه سینوپتیک شیراز در یک دوره 9 ساله (2008-2000) ب...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 22  شماره 135

صفحات  29- 37

تاریخ انتشار 2015-09

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

کلمات کلیدی برای این مقاله ارائه نشده است

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023